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Abstract. Knowledge inconsistencies can naturally arise in the application domains
considered in Artificial Intelligence, for example as a result of data mining in distributed
sources. To deal with inconsistent knowledge, several inconsistent descriptive logic have
been proposed. In this paper, we face the problem of learning concepts for inconsistent
basic knowledge systems on a bisectoral basis. Here, we present a learning conceptual
system in inconsistent knowledge bases and discuss the preliminary experimental results
obtained in the field of electronic applications.
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1. Introduction.

Description logics(DLs) is a family of formal languages that is well suited for representa-
tion and reasoning in a domain of particular interest. DLs is of particular importance in
providing theoretical models for semantic systems. It is the basic for building languages
for modeling ontologies in which OWL is a language that is recommended by the W3C
International Standard for use in Semantic Web systems [5, 9]. Description logics have
usually been considered as syntactic variants of restricted versions of classical first-order
logic [1]. On the other hand, in Semantic Web and multiagent applications, knowledge
fusion frequently leads to inconsistencies. A way to deal with inconsistencies is to follow
the area of paraconsistent reasoning [9, 12].

Concept learning in DLs is similar to binary classification in traditional machine learn-
ing. The differences are that in DLs objects are described not only by attributes but also
by the relationship between the objects. As bisimulation is the notion for characteriz-
ing indiscernibility of objects in DLs. It is very useful for concept learning in this DLs.
Consider a domain with individuals represented by single and binary predicates. In DL
language, predicates such as concept name and role name, respectively. Domains can be
described by different sources. For example, individuals may be some object in an area on
earth and sources of information may be computer systems of different satellites objects
described by some boolean attributes and binary relationships between them. Another
example is the following: Some banks cooperate to share information about their cus-
tomers to a certain extent; the bank’s customers are individuals; atomic concepts can be
credibility, wealth, and financial discipline; Atomic roles can be some relationship based
on the transformation. Sources may provide consistent or inconsistent assertions. Based
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on them, the paraconsistent interpretation can be generated as an integrated information
system.

Another situation of dealing with paraconsistent interpretations occurs when an incon-
sistent knowledge base is given. Such a knowledge base may result from combining or
merging different knowledge bases. Usually, matching or merging ontologies is done semi-
automatically by people using software tools. However, when the considered knowledge
bases are dynamic, the automatic mode is unavoidable. In general, there are situations in
which the considered knowledge base is inconsistent and one still wants to use it to derive
only meaningful consequences. Having a knowledge base, sometimes we want to generate
its models. For examples, for concept learning in DL from a knowledge base KB given as
a training information system, generated models of KB can be used to guide the search
process C concept [11]. When KB is inconsistent w.r.t the traditional semantics, it has
only paraconistent models.

Now, consider the concept learning problem set as follows. We are given a training
information system I with inconsistent data, which is a s- interpretation, together with
three subsets E+, E− and Ep of ∆I , which consist of positive examples, negative exam-
ples and inconsistent examples of a concept C. We may be told that C is in a restricted
language and the learning concept is allowed to have some small error rate.

Concept learning in description logics has been studied by many researchers and is
divided into three main approaches. The first approach focuses on the ability to learn in
description logics and builds some simple algorithms [4, 7]. The second approach studies
the concept learning in the description logic using refinement operators [6, 8, 2]. The third
approach exploits bisimulation for concept learning problems in description logics. In [7]
Lambrix and Larochia proposed a simple concept learning algorithm based on the con-
cept. Lehmann and Hitzler [8], Badea and Nienhys [2], Iannone et al [6] studied concept
learning in DLs by using refinement operators as in inductive logic programming. Apart
from refinement operators, scoring functions, and search strategies also play important
roles in algorithms proposed in those works.
All Last works handle on the consistent knowledge base. In this paper, we develop the
bisimulation based method for inconsistent knowledge system, for concept learning in
paraconsistent DLs. Concept learning problem C such that:

(1): KB |= C(a) for all a ∈ E+ and a /∈ E−,
(2): KB |= C(a) for all a ∈ E− and a /∈ E+,
(3): KB |= C(a) for all a ∈ E+ and a ∈ E−.

Where KB is a knowledge base in the considered DLs, and E+, E− are given sets of
examples of C. As bisimulation is the notion for characterizing indiscernibility of objects
in paraconsistent DLs, our method is natural and very promising.
Our method is completely different from the ones of [4, 6, 8, 2], as it is based on bisimula-
tion for paraconsistent DLs, while all the later ones are learning on consistent knowledge
systems.

The rest of this paper is structured as follows. In Section 2, we present notation and
semantics of the paraconsistent DLs considered in this paper. In this Section 3, we recall
bisimilarity for paraconsistent description logics. In Section 4, we present a learning al-
gorithm based on bisimulation and in Section 5 we evaluate this algorithm by means of
our implementation. Finally, in Section 6 we summarize our work and draw conclusions.

2. Preliminaries.

2.1. Notation and semantic of Description logics. In this work, we consider a finite
set C of concept names, a countable set I of individual names a countable set R of role
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names. We use letters like A,B to denote concept names, letters like r, s to denote role
names, and letters like a, b to denote individual names.
A DL− signature is set Σ = ΣI ∪ ΣC ∪ ΣR, where:

ΣI is a finite set of individual names, ΣC is a finite set of concept names, ΣC is a finite
set of role names.

Let Φ be a set of features among I (inverse roles), O (nominal), Q (qualified number
restrictions), U (the universal role) and Self (local reflexivity of a role). In this section, we
recall notations and semantics of the DLs ALCΦ. A set of DL-features is a set consisting
of some or zero of these names.
Given a DL-signature Σ, a set Φ of DL-features, L = ALC, roles and concepts of the
language L are defined in [11].

2.2. Paraconsistent semantics for Description logics. Following the recommenda-
tion of W3C for OWL, like [10, 3] we use the traditional syntax of DLs and only change
its semantics to cover paraconsistency.

Recall that, using the traditional semantics, every query is a logical consequence of
an inconsistent knowledge base. A knowledge base may be inconsistent, for example,
when it contains both individual assertions A(a) and ¬A(a) for some A ∈ C and a ∈ I.
Paraconsistent reasoning is inconsistency-tolerant and aims to derive meaningful logical
consequences even when the knowledge base is inconsistent.This problem just handles
three-valued logic (t: true, f: false and i: inconsistent). We identify s is paraconsistent
semantics, s with the tuple sC, sR, s∀∃Q, sGCI. The set of considered paraconsistent semantics
is thus

S = {2, 3} × {2, 3} × {+,±} × {w,m, s}.

For s ∈ S, an s-interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set,
called the domain, ·I is the interpretation function, which maps every individual name a
to an element aI ∈ ∆I , every concept name A to a pair AI = 〈AI+, AI−〉 of subsets of ∆I ,
and every role name r to a pair rI = 〈rI+, rI−〉 of binary relations on ∆I such that:

• if sC = 2 then AI+ = ∆I \ AI−
• if sC = 3 then AI+ ∪ AI− = ∆I

• if sR = 2 then rI+ = (∆I ×∆I) \ rI−
• if sR = 3 then rI+ ∪ rI− = ∆I ×∆I .

The intuition behind AI = 〈AI+, AI−〉 is that AI+ gathers positive evidence about A,
while AI− gathers negative evidence about A. Thus, AI can be treated as the function
from ∆I to {t, f, i} defined below:

AI(x) =


t for x ∈ AI+ and x /∈ AI−
f for x ∈ AI− and x /∈ AI+
i for x ∈ AI+ and x ∈ AI−

(1)

Informally, AI(x) can be thought of as the truth value of x ∈ AI . Note that AI(x) ∈
{t, f} if sC = 2, and AI(x) ∈ {t, f, i} if sC = 3. The intuition behind rI = 〈rI+, rI−〉 is
similar, and under which rI(x, y) ∈ {t, f} if sR = 2, and rI(x, y) ∈ {t, f, i} if sR = 3.

The interpretation function ·I maps a role R to a pair RI = RI+, R
I
−, defined for the

case R /∈ R as follows:

(r−)I = (rI+)−1, (rI−)−1

UI = ∆I ×∆I , ∅.
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Function ·I maps a complex concept C to a pair CI = 〈CI+, CI−〉 of subsets of ∆I defined
as follows:

>I = 〈∆I , ∅〉
⊥I = 〈∅,∆I〉

({a})I = {aI},∆I \ {aI}
(¬C)I = 〈CI−, CI+〉

(C uD)I = 〈CI+ ∩DI+, C
I
− ∪DI−〉

(C tD)I = 〈CI+ ∪DI+, C
I
− ∩DI−〉

(∃R.Self)I =
〈
{x ∈ ∆I | (x, x) ∈ RI+},
{x ∈ ∆I | (x, x) ∈ RI−}

〉
;

if s∀∃Q = + then
(∃R.C)I =〈

{x ∈ ∆I | ∃y((x, y) ∈ RI+ ∧ y ∈ CI+)},
{x ∈ ∆I | ∀y((x, y) ∈ RI+ → y ∈ CI−)}

〉
(∀R.C)I =〈

{x ∈ ∆I | ∀y((x, y) ∈ RI+ → y ∈ CI+)},
{x ∈ ∆I | ∃y((x, y) ∈ RI+ ∧ y ∈ CI−)}

〉
;

(≥ nR.C)I =〈
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y ∈ CI+} ≥ n},
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y /∈ CI−} < n}

〉
(≤ nR.C)I =〈
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y /∈ CI−} ≤ n},
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y ∈ CI+} > n}

〉
;

if s∀∃Q = ± then
(∃R.C)I =〈

{x ∈ ∆I | ∃y((x, y) ∈ RI+ ∧ y ∈ CI+)},
{x ∈ ∆I | ∀y((x, y) /∈ RI− → y ∈ CI−)}

〉
(∀R.C)I =〈

{x ∈ ∆I | ∀y((x, y) /∈ RI− → y ∈ CI+)},
{x ∈ ∆I | ∃y((x, y) ∈ RI+ ∧ y ∈ CI−)}

〉
;

(≥ nR.C)I =〈
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y ∈ CI+} ≥ n},
{x ∈ ∆I | #{y | (x, y) /∈ RI− ∧ y /∈ CI−} < n}

〉
(≤ nR.C)I =〈
{x ∈ ∆I | #{y | (x, y) /∈ RI− ∧ y /∈ nCI−} ≤ n},
{x ∈ ∆I | #{y | (x, y) ∈ RI+ ∧ y ∈ CI+} > n}

〉
.

We denote Γ is a set of concepts, ΓI+ =
⋂
{CI+ | C ∈ Γ}, ΓI− =

⋃
{CI− | C ∈ Γ} and

ΓI = ΓI+,Γ
I
−. Observe that, if Γ is finite, then ΓI = (Γ)I .

Example 2.1. An example of inconsistent knowlege base in L refers to electronic devices:

Let ΣI={Cellphone, Bluetooth, Laptop, Memory, Size, Weight}
ΣC={Device, General}
ΣR={hasGeneral}
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A={General(Memory), General(Size), General(Weight), General(Bluetooth), Device(Cellphone),
Device(Laptop), Device(Memory), hasGeneral(Cellphone,Size), hasGeneral(Cellphone,Memory),
hasGeneral(Cellphone,Bluetooth), hasGeneral(Laptop,Size), hasGeneral(Cellphone,Weight),
hasGeneral(Cellphone,Memory) }
T ={Device = ∃hasGeneral.>}
This knowledge base is inconsistent because both concepts Device and General contain the
object Memory.
An interpretation of the inconsistent knowledge base following:
∆I = {a, b, c, d, e, f}, CellphoneI = a, BluetoothI = b, LaptopI = c, MemoryI = d,
SizeI = e, WeightI = f .
DeviceI = {a, c, d}, GeneralI = {b, d, e, f}.

3. Bisimulation for Concept Learning in Paraconsistent Description Logics.
Bisimulation is as a binary relation between nodes of a labeled in a graph. We will
demonstrate how to modify and extend bisimulation to deal with richer logic languages.
The approach is as follows: Fix a logic language, for example, a description logic, and
define bisimulation so the Hennessy-Milner property still holds.
Bisimulation is of interest to researchers and it is applied in practice in which three main
applications are mentioned: (i) Separating the expressive powers of logic languages; (ii)
Minimizing interpretations and labeled state transition systems; (iii) Concept learning in
description logics.
In this section, we consider an implementation of bisimilarity for concept learning in
description logics when inconsistencies occur. Bisimilation applied for Description Logics
in concept learning problems with consistent knowledge [11]. We repeat the definition
from the idea is to use models of KB and bisimularity in this model to guide the search
for C concept.
Let Φ ⊆ {I, O,Q, U, Self} be a set of features, s ∈ S a paraconsistent semantics, and
I, I ′ s-interpretations. A non-empty binary relation Z ⊆ ∆I × ∆I

′
is called a (Φ, s)-

bisimulation between I and I ′ if the following conditions hold for every a ∈ I, x, y ∈ ∆I ,
x′, y′ ∈ ∆I

′
, A ∈ C, r ∈ R and every role R of ALCΦ different from U :

(1): Z(aI , aI
′
)

(2): Z(x, x′)⇒ [AI+(x)⇒ AI
′

+ (x′)]

(3): Z(x, x′)⇒ [AI−(x)⇒ AI
′
− (x′)]

(4): [Z(x, x′) ∧RI+(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧RI

′
+ (x′, y′)],

(5): if s∀∃Q = + then
[Z(x, x′) ∧RI

′
+ (x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧RI+(x, y)]

(6): if s∀∃Q = ± then
[Z(x, x′) ∧ ¬RI′− (x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ ¬RI−(x, y)],

(7): if O ∈ Φ then
Z(x, x′)⇒ (x = aI ⇔ x′ = aI

′
),

(8): if Q ∈ Φ then
if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements of ∆I such
that RI+(x, yi) holds for every 1 ≤ i ≤ n, then there exist pairwise different elements

y′1, . . . , y
′
n of ∆I

′
such that RI

′
+ (x′, y′i) and Z(yi, y

′
i) hold for every 1 ≤ i ≤ n,

(9): if Q ∈ Φ and s∀∃Q = + then
if Z(x, x′) holds and y′1, . . . , y

′
n (n ≥ 1) are pairwise different elements of ∆I

′
such

that RI
′

+ (x′, y′i) holds for every 1 ≤ i ≤ n, then there exist pairwise different elements
y1, . . . , yn of ∆I such that RI+(x, yi) and Z(yi, y

′
i) hold for every 1 ≤ i ≤ n,



Classification of concepts using decision trees for inconsistent knowledge systems based on bisimulation 27

(10): if Q ∈ Φ and s∀∃Q = ± then if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise

different elements of ∆I
′

such that ¬RI′− (x′, y′i) holds for every 1 ≤ i ≤ n, then there
exist pairwise different elements y1, . . . , yn of ∆I such that ¬RI−(x, yi) and Z(yi, y

′
i)

hold for every 1 ≤ i ≤ n,

if U ∈ Φ then

(11): ∀x ∈ ∆I ∃x′ ∈ ∆I
′
Z(x, x′)

(12): ∀x′ ∈ ∆I
′ ∃x ∈ ∆I Z(x, x′),

if Self ∈ Φ then

(13): Z(x, x′)⇒ [rI+(x, x)⇒ rI
′

+ (x′, x′)]

(14): Z(x, x′)⇒ [rI−(x, x)⇒ rI
′
− (x′, x′)]

As a consequence, if one of the above conditions holds and I, I ′ are s-interpretations
(Φ, s)-bisimilar to each other, then I |=s A iff I ′ |=s A.

4. Concept Learning for Paraconsistent Description Logics. Concept learning
problem is similar to binary classification in traditional machine learning. The difference
is that in paraconsistent description logics objects are described not only by attributes
but also by binary relationships between objects. As bisimulation is the notion for char-
acterizing indiscernibility of objects in paraconsistent description logics. It is very useful
for concept learning in inconsistent knowledge base systems.

Definition 4.1. (Learning problem in paraconsistent description logics). Let I be a finite
interpretation (given as a training information system), a knowledge base KB in a DL L
and sets E+, E− of individuals, learn a concept C in L such that:

(1): KB |= C(a) for all a ∈ E+ and a /∈ E−,
(2): KB |= C(a) for all a ∈ E− and a /∈ E+,
(3): KB |= C(a) for all a ∈ E+ and a ∈ E−.

The goal of learning is to find a correct concept with respect to the examples. This can be
seen as a search process in the space of concepts. A natural idea is imposing an ordering
on this search space and use models of KB and bisimulation in those models to guide the
search for C.

The main idea of this method is to smooth the ∆ domain of the information system I
using the selectors. Based on that idea, the concept learning approach is broadly described
as follows:

Let Ap ∈ ΣC be a concept name standing for the decisionattribute and suppose that Ap

can be expressed by a concept C in LΣ+,Φ+ , where Σ+ ⊆ Σ\Ap and Φ+ ⊆ Φ. Let I be a
training information system over Σ. How can we learn that concept C on the basis of I.

The main idea of this method is to smooth the ∆ domain of the information system I
using the selectors. Based on that idea, the concept learning approach is broadly described
as follows:

1. Starting from ∆I partition, we smooth this partition sequentially until we reach the
partition corresponding to Ap. This smoothing process can be stopped sooner when
the current partition is consistent with E or satisfies certain conditions.
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2. In the process of smoothing ∆I partition, the blocks created at all steps are Y1, Y2, ..., Yn.
Each generated block is denoted by a new index by increasing the value of n. For
each 1 ≤ i ≤ n, we set the following information:
• Yi is characterized by a concept Ci such that CIi = Yi,
• Record information about Yi is split by E,
• Saving the index of the largest block Yj such that Yi ⊆ Yj and Yj is not split by

E.
3. The current partition is denoted Y = {Yi1 , Yi2 , ..., Yik} ⊆ {Y1, Y2, ..., Yn}
4. When the current partition becomes consistent with Ap, return Ci1 t ...tCi1 , where

i1...ij are indices such that Yi1 ...Yij are all the blocks of the current partition that
are subsets of Ap.

Example 4.1. Consider knowledge base has been given in Example 1. Suppose we want
to learn a concept C such that CI = {a, c}

1. Y1 := ∆I, C1 = >, partition := {Y1},
2. splitting Y1 by Device
• Y2 := {a, c, d}, C2 := Device ,
• Y3 := {b, d, e, f}, C3 := ¬Device,
• partition := {Y2, Y3},

3. splitting Y2 by ∃hasGeneral.>:
• Y4 := {a, c}, C4 := C2 u ∃hasGeneral.> ,
• Y5 := {d}, C5 := C2 u ¬∃hasGeneral.>,
• partition := {Y3, Y4, Y5},

4. The partition is consistent with {a, c}
The returned concept is C = C4 = Device u ∃hasGeneral.>.

5. Preliminary Evaluation.

5.1. The datasets. We applied the proposed model on the set of electric devices. We
buid concepts data, roles data and individuals data. We labelled and testing datasets
with different numbers of inconsistent concepts. The device data set contains electronic
device information and attributes including information on 941 types of configurations
(concepts), 32 links between objects (roles), and 521 objects (individual). Each object
in the data set is expressed by the concept. We use data from 7 out of 627 subjects for
training and validate. Data of the other types of equipment is used for test.

Figure 1. Test the inconsistent data set on Protege
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After some preprocessing steps on these datasets, i.e. tested the inconsistent data set
on Protege. Protege error when testing Reasoner with HermiT.

The reason it’s inconsistent data here is that of the plastic cover that the plastic is
also on the screen. Meanwhile, the cover and the screen are disjointed (the two layers are
totally unrelated, unrelated) to each other.

5.2. Experimental results. We took several experiments with different of rate of in-
consistent data to evaluate the effect of the proposed algorithm. In order to analyse the
contribution of the labelled datasets, we also generated some subsets with the size of 25,
30, 35, 40, 45, 50, 55, 60 inconsistent data rates.
To illustrate the influence of the inconsistent parameter, we additionally measured ten-
fold cross-validation accuracy, Recall, Precision, and F1-Measure. The results are shown
in Table. Since the inconsistent parameter acts as a termination criterion, we observe, as
expected that lower inconsistent values lead to significant increases in accuracy.

Table 1. The influence of the inconsistent parameters in knowledge system

Inconsistent(%) Accuracy(%) Precision(%) Recall(%) F1-Measure(%)
25 80.00 66.67 100 80.00
30 78.43 63.54 100 75.00
35 75.62 60.00 100 70.00
40 72.14 56.00 100 66.00
45 71.00 52.48 100 63.67
50 70.48 48.23 100 62.33
55 70.32 44.00 100 59.00
60 70.00 40.00 100 57.14

Overall, the presented approach is able to learn accurate and inconsistent concepts with
a reasonably low number of expensive reasoner requests. Note that all the approaches
are able to learn in a very expressive language with arbitrarily nested structures, as can
be seen in the concept above. Learning many levels of the structure has recently been
identified as a key issue for structured Machine Learning and our work provides a clear
advance on this front.

The evaluations show that our approach is competitive with state-of-the-art Web Se-
mantic systems when the approximate reasoning technique is used.

6. Conclusion. In this paper, a concept learning model for paraconsistent knowledge
base system is introduced discussed. The key idea in this work is to use models of
KB and bisimulation in those models to guide the search for C. This mathematical
technique, along with the partitioning strategies used, has been tested on two theoretical
and experimental aspects.
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